A Bayesian Technique in Medical Image Segmentation for Classifying Registration
نویسنده
چکیده
In the image, we address a complex image registration issue arising when the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. A common assumption in nonlinear mixed-effects models is the normality of both random effects and within-subject errors. However, such assumptions make inferences vulnerable to the presence of outliers. More flexible distributions are therefore necessary for modeling both sources of variability in this class of models. The registration problem is formulated both as an energy minimization problem and as a Maximum A Posteriori (MAP) estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated at the same time, leading to an original combination of registration and classification that we call image classifying registration.
منابع مشابه
A novel segmentation method of medical CBCT image in liver organ based on Bayesian network
Introduction: This paper proposed a kind of segmentation method for medical CBCT image in liver organ based on Bayesian network. Methods: Taking CBCT medical image of liver organ as a focus of medical image segmentation and to segment the area we are interested in with noise elimination and image enhancement. In order to show multiple image information including the liver organ CBCT image color...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کامل